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Isothermal steady flow of an incompressible medium consisting of
long elastic molecules is examined.

As a dense flowing medium, a polymer system
(dilute and concentrated polymer solutions and melts)
is described by a velocity vi and velocity gradients
ik = 0vi/ox.

When regarded as an assembly of linear polymeric
molecules of identical length, the system is also
determined by certain internal parameters charac-
terizing the states of the system, which, bearing in
mind the relation of the theory being developed to
the theory of dilute polymer solutions [1], it is nat-
ural to assume to be mean square values of the com-~
ponents of the distance between the ends of a molecule
<hjhg> = [w (h) hjhpdh, where w (b) is a distribution
function depending on the velocity gradients. The
values of the parameters in the moving and in the
motionless fluid are connected by the relation

< hihk Yy = a"iak]' < h‘;z > 0 (1)

The internal strain tensor &) may be expanded, for
small gradients, in the series
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To describe the mechanical and optical-mechani-
cal behavior of polymer systems, we proceed from
expressions for the free energy, the dielectric con-
stant tensor, and the dissipation function, repre-
sented in additive form, which is possible, since the
polymeric molecule is a2 macrosystem. In spite of
entanglement, the total intermolecular interaction
energy is small in comparison with the internal
energy of a chain, and the macromolecule in the
systems examined manifests itself as an entity. For
unit volume
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We shall expand the integrand expressions in even
powers of h; (because the ends of the molecule are
indistinguishable), and the dissipation function, more-
over, in symmetric and asymmetric combinations of
the velocity gradient tensor v(jk) and V). With an
accuracy to termsg of third order,

F=F,+g(hy; (8)
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The tensor €jiy; * 0 only in the case of solutions,
if the dielectric constant of the solvent differs from
that of the polymer (macroshape effect).

Using the formula {2}
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and omitting terms with velocity gradient powers above
the first, we obtain the stress tensor

O = — P8+ 28 {hhy )y +2(a 4 0a (R )i +
+ (ag + ag) AR D v (@5 — o) CRA D vy +
+ (g as) by > vy + (@ —as) ChA D> v, (10)

which proves to be asymmetrical, this being asso-
ciated with the presence of internal rotation.

From (7) and (10) we obtain the relations observed
experimentally [3] between the elastic stresses and the
optical properties of the system. We shall obtain ex-
pressions for the effective viscosity in two simple
cases. From this point on we shall use the experi-
mental fact: oy = 033 [3], and shall assume that for
zero velocity gradients the Trouton relation 7 | = 30,
[4] holds. It may be verified that it is necessary, to
satisfy these conditions, that

Uz = Uy, (15‘—‘0.

In simple shear (v, # 0) we shall assume, &s in
the theory of flow of dilute solutions [1}, that the
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component normal to the plane of flow does not change:
(hf) = {h$), = s. We shall omit terms with odd
powers of velocity gradient in the diagonal compo-
nents, since the latter should not depend on the sign
of the gradient,

From (1), (2), and (4), we have

(B =s[l-+dvh+ .]
ChEY =s[l + @2 —tDhvh + ..
{hhe > = s[(Taore + Tousz) Vie + ... 1. (11)

For the shear viscosity we obtain the expression
N, =anb o B+ S (3R — (D) =
= p + 5{(20; 4 304) T* — 20571 vZ, 4 ..., (12)

which decreases when 7 << 7 ("rigid" molecules) and
increases when 7 > T, ("elastic" molecules), in con-
formity with the ideas and experiments of Peterlin
[5]. For "rigid" molecules there are numerous data
showing a decrease in viscosity both for melts [6] and
for concentrated [7] and dilute [8] solutions,

When there is simple tension (vy; = v33 = —v;/2),
we establish from condition (4) that Tiigq = T0iq» and
then

ChES =s[l4 2uv, i+ .,

{ ht}flk > = ${Tpvis + Triravee + .01, (13)

The tensile viscosity,

1’]“=3((11+a2<h2>)+a3(2(h%>+ <h§>)=

= 3p + 3sugtvy -+ 95(20s + a4) Tzv?l + .. (14)
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increases with increase of velocity gradient, which
corresponds with experimental data [9].

Thus, the theory put forward gives a qualitatively
true picture of the phenomena observed in the flow
of polymer systems.

NOTATION

vi—velocity; v;~ velocity gradient tensor; hj—distance between
ends of molecule; ojk—internal strain tensor; ;,—Kronecker symbol;
To Tu Tijgp™ relaxation time; n—number of macromolecules in unit
volume; for a macromolecule in the system: A (h)~free energy,
Bik(h)~dielectric susceptibility tensor, K (h, vig) —dissipation func-
tion; g~ viscoelastic shear modulus; o;—phenomenological constants;
K= og +3s 0 + s ag—initial shear viscosity; p—hydrostatic pressure.
Subscripts i, k=1, 2, 3 number the vector and tensor components.
The summation convention is employed.
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